
The Steric Effects of Alkyl Groups on the N-H Stretching Vibrations and the Rotational Isomerism of Alkylureas

Yoshiyuki Mido and Tamotsu Gohda Department of Chemistry, Faculty of Science, Kobe University, Nada, Kobe 657 (Received April 14, 1975)

The free N-H stretching vibrations of various trialkylureas, R_2UR' , in dilute solutions were studied in order to resolve our questions concerning the rotational isomerism of dialkylureas. In the infrared spectrum of R_2UR' , where R is isopropyl or cyclohexyl, an additional N-H band appears on the higher-frequency side of the trans N-H band. It was also observed that the larger the effective size of the R' group on R_2UR' is, the stronger the intensity of the additional band becomes. It was concluded, in connection with the rotational isomerism of dialkylureas, that the additional band arises from a form in which the N-H group is out of the skeletal plane.

In our previous studies of mono- and dialkylureas, 1-4) it was shown that N,N'-dialkylureas (RUR') in solution take the configuration with the trans-trans relation between the C=O group and the two N-H groups; this was contrary to the interpretation by Rao et al.⁵⁾ However, the infrared spectrum of sym-di-t-butylurea (s-DtBU) showed a very weak N-H stretching band (3469 cm⁻¹) in addition to the trans N-H stretching band (3437 cm⁻¹); this suggested that the coexistence of a certain additional isomer arises as a result of the steric hindrance between the bulky alkyl group and the C=O group.¹⁾ If this isomer, coexisting with the dominant trans-trans isomer, is assumed to be in the trans-cis configuration, the substitution of another bulky group for either of the two imino hydrogen atoms on RUR' having bulky groups will stabilize the trans form further for the following reasons.

The substitution of the bulky group at the A site may decrease the amount of the cis form about the C-N₂ axis by virtue of the steric hindrance between the substituted group and the R' group. On the other hand, the substitution at the B site does not change the trans form about the C-N₁ axis. Accordingly, in the spectra of trialkylureas with bulky groups, the band corresponding to the $3469~\rm cm^{-1}$ band of s-DtBU is expected to be weak or absent, if the above assumption is correct.

Thus, in the present study, the N–H stretching vibrations of various trialkylureas, R_2 NCONHR' (R_2 UR'), were investigated in order to examine whether or not the 3469 cm⁻¹ band of s-DtBU arises from the cis form and to establish the relationships between the configurations and the N–H stretching frequencies of R_2 UR'.

Experimental

Various $R_2 \mathbf{U} \mathbf{R}'$ substances were prepared by adding the corresponding alkylisocyanate to some dialkylamines. These crude samples were purified by repeated recrystallizations

from suitable solvents, and the purified samples were identified by elementary analysis. Solvents for spectroscopy were used.

The infrared measurements were made with a Hitachi EPI-2G Infrared Grating Spectrophotometer. Samples were examined as 0.02 M solutions using 5-mm (3 μ m region) and 0.5-mm cells (6 μ m region). The recording conditions of the spectra were the same as in the previous study.¹⁾

Results and Discussion

The N-H Stretching Bands. The infrared spectra of R₂UR' in solutions will exhibit only one free N-H stretching band, if rotational isomerism is not taken into account, since R2UR' substances have only one N-H bond. However, as is shown in Table 1 and Fig. 1, where the observed free N-H stretching bands are summarized, the spectra of ten R₂UR' derivatives (five DiPUR' and five DcHUR') exhibited two free N-H bands (we will conventionally denote this type of R_2UR' as R_2UR' -II), and the spectra of the other R₂UR' derivatives showed one free N-H band $(\bar{R}_2 U R'-I)$. Also, cHMUR'-type compounds, examined for comparison, exhibited only one N-H band (see the bottom of Table 1). Among the three kinds of solutions studied, the CS₂ solution showed most prominently the two N-H bands of R_2UR' -II.

From the comparisons of the band positions, the lower-frequency band of R_2UR' -II, as well as only one band of R_2UR' -I and cHMUR', is assigned to the N-H stretching vibration arising from the configuration with the *trans* relation between the N-H and C=O groups.

These N-H bands—the band of R_2UR' -I and the lower band of R_2UR' -II—appear at the positions characteristic of the substituent, R', attached to the N-H bond. Such correlations between the N-H stretching frequencies and the type of R' group correspond to the similar correlations obtained previously for the trans N-H stretching frequencies of RUR', $^{1-4}$) although the N-H frequencies of R_2UR' are higher by $\sim 20 \text{ cm}^{-1}$ than those of the trans bands of RUR'.

On the other hand, the spectra of R_2UR' -II showed another free N-H band observed at the higher-(approximately $20~\rm cm^{-1}$) frequency side of the trans N-H band. As may be seen from Table 1, the appearance of the two free N-H bands is dependent upon the bulkiness of the R groups on R_2UR' but not on that

Table 1. The N-H stretching frequencies (cm $^{-1}$) of R_2 NCONHR'

	Solvent	R'							
R_2		M (methyl)	E (ethyl)	iP (isopropyl)	cH (cyclohexyl)	tB (t-butyl) 3467 3460 3456			
DM (dimethyl)	HCCl3 $ CCl4 $ $ CS2$	3489 3483 3475	3471 3470 3466	3460 3460 3452	3457 3455 3453				
$rac{ extbf{DE}}{ ext{(diethyl)}}$	${{ m HCCl}_3}\atop {{ m CCl}_4}\atop {{ m CS}_2}$		3471 3474 3466	3459 3459 3453	3458 3460 3454	3466 3461 3457			
DP (di- <i>n</i> -propyl)	HCCl3 $ CCl4 $ $ CS2$	3489 3484 3476		3458 3460 3454	3459 3460 3456	3466 3461 3457			
$\mathrm{D}i\mathrm{P}\ \mathrm{(di-}i\mathrm{-propyl)}$	$ \begin{array}{c} \text{HCCl}_3 \\ \text{CCl}_4 \\ \text{CS}_2 \end{array} $	3505 3491 3498 3479 3494 3472	3493 sh 3490 sh 3484 3464	3483 3464 3479 3458 3478 3452	3481 3462 3480 3460 3477 3454	3482 sh 3482 3455 3480 3452			
DB (di- <i>n</i> -butyl)	$ \begin{array}{c} \text{HCCl}_3 \\ \text{CCl}_4 \\ \text{CS}_2 \end{array} $				3458 3459 3455	3466 3462 3459			
$egin{aligned} ext{D}i ext{B}\ ext{(di-}i ext{-} ext{butyl)} \end{aligned}$	${f HCCl_3} \ {f CCl_4} \ {f CS_2}$	3489 3483 3476		3459 3460 3459	3466 3462 3458	3468 3462 3461			
DcH (di-cyclohexyl)	$ \begin{array}{c} \text{HCCl}_3 \\ \text{CCl}_4 \\ \text{CS}_2 \end{array} $	3505 3489 3495 3481 3492 3472	3490 sh 3487 sh 3482 3464	3481 sh 3478 3460 3477 3454	3479 sh 3477 sh 3474 3454	3485 3463 3478 3455 3478 3451			
cHM (cyclohexyl,) (methyl,	$ \begin{array}{c} \text{HCCl}_3 \\ \text{CCl}_4 \\ \text{CS}_2 \end{array} $	3486 3484 3474		3461 3461 3452	-	3461 3462 3457			

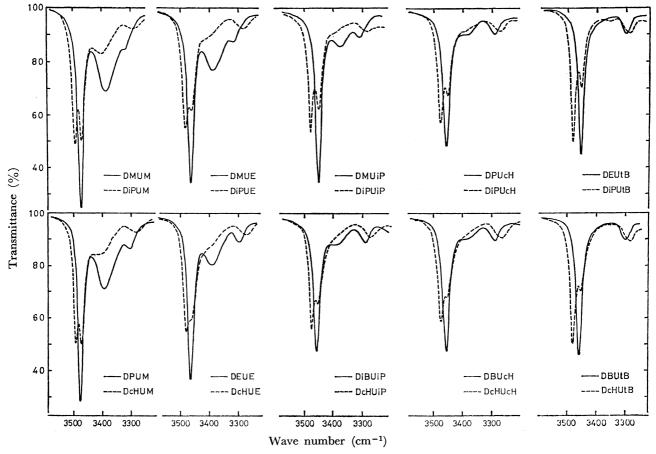


Fig. 1. The free N-H stretching absorption bands of various $R_2 U R'$ in CS_2 (0.02 M).

of the R' group. Even cHMUtB, with the $C_6H_{11}-N-$ group of a sterically medium size, exhibited only one N-H band.

Examining the band intensities of R_2UR' in Fig. 1, one can understand easily that the higher N-H band appears at the expense of the intensity of the trans N-H band (the lower band). Therefore, the higher band may be concluded to originate from a certain rotational isomer which is mainly caused by the steric hindrance of the R groups and the C=O group, and that this band corresponds to the very weak band at 3469 cm⁻¹ of s-DtBU in CCl₄.

On the assumption that the 3469 cm^{-1} band of s-DtBU arises from the cis form in the trans-cis configuration, consider the substitution of another bulky group for either of the two imino hydrogen atoms on RUR' with the trans-cis configuration.

If the hydrogen atom at the A site is substituted for a bulky group, the steric hindrance between the substituent and the R' group may be more serious than that between the C=O and the R' groups in the case of the *trans* form. Accordingly, this substitution will

favor the *trans* configuration. On the other hand, another substitution at the B site leaves the *trans* configuration. Thus, if the weak 3469 cm⁻¹ band of s-DtBU arises from the cis form, the corresponding band of trialkylureas with bulky groups may be expected to be weak or absent.

Let us consider N-cyclohexyl-N'-t-butylurea (cHUtB) and N-dicyclohexyl-N'-t-butylurea (DcHUtB) as examples. We have previously reported that the spectrum of cHUtB in CHCl₃ shows a weak band at 3471 cm⁻¹ corresponding to the 3469 cm⁻¹ band of s-DtBU.⁴) In the spectrum of DcHUtB in Fig. 1, the corresponding band appears strongly at 3478 cm⁻¹ and is even stronger than the trans N-H band at 3451 cm⁻¹, contrary to the expectation based on the above assumption. These observations clearly indicate that the coexisting rotational isomer of s-DtBU in solution is not in the trans-trans configuration.

All the spectra of DiPUR' and DcHUR' examined in this study have a band corresponding to the 3478 cm⁻¹ band of DcHUtB. As has been mentioned above, this band appears when two R groups on R_2UR' are isopropyl or cyclohexyl groups, either of which is bulkier than the other groups. Unfortunately, no R_2UR' with the bulkiest R group, t-butyl, could be examined.

It is quite evident from Fig. 1 that the bulkier the effective size of the R' group on R_2UR' -II is, the stronger the intensity of this band becomes at the expense of that of the *trans* N-H band. This indicates that probably the steric hindrance between the R' and the

Table 2. The C=O (Amide I) stretching frequencies of R2NCONHR' (0.02 mol/l in CCl4)

R_2	R'								
	$\widetilde{\mathbf{M}}$	E	iP	cН	tB.				
DM	1668	1667	1665	1667	1672				
DE		1660	1658 1651	1659 1651	1665				
DP	1663		1659 1652	1659 1652	1665				
$\mathrm{D}i\mathrm{P}$	1659 1640	1659 1651	1658 1652 1638	1658 1652 1645	1659 1654				
DB				1658 1651	1663				
$\mathrm{D}i\mathrm{B}$	1663		1658 1651	1659 1652	1664				
DcH	1658 1652 1649	1658 1652 1644	1658 1651 1645	1658 1651 1640	1658 1653				
cHM	1660 1654		1659 1654		1661				

Table 3. The C=O (Amide I) and C-N (Amide II) stretching frequencies of R_2 NCONHR' (0.02 mol/l in CHCl₃)

		R'									
R_2	Ñ	$\widetilde{\mathbf{M}}$		E		iP		cH		tB	
	Ia)	IIa)	I	II	I	II	I	II	I	II	
DM	1642	1533	1640	1524	1640	1520	1633	1513	1641	1520	
DE			1633	1518	1630	1510	1632	1510	1634	1513	
DP	1638	1525			1630	1510	1630	1509	1633	1514	
$\mathrm{D}i\mathrm{P}$	1623	1516	1624	1513	1620	1510 1502	2 1621	1512 1505	1623	1511	
DB				<u>_</u>			1628	1508	1633	1513	
$\mathrm{D}iB$	1639	1525	-		1628	1509	1629	1512	1635	1512	
DcH	1622	1515	1620	1514	1619	1510 1505	5 1620	1512 1505	1642	1625 1512	
$_{ m cHM}$	1632	1520			1625	1510			1634	1512	

a) I: C=O stretch (Amide I), II: C-N stretch (Amide II).

C=O groups plays an important role in determining the amount of the coexisting rotational isomer.

As for the associated N-H band of all the R_2UR' substances on the lower-frequency side of the *trans* N-H band, it may be seen that the bulkier the effective size of substituents is, the weaker the intensity of this band becomes.

From the above discussion, it may be concluded that the serious steric hindrance prevents the two R groups from leaving the skeletal plane, and that, at the same time, this effect makes the N-H bond out-of-plane, but cannot convert the N-H bond into the cis position. That is, the 3469 cm⁻¹ band of s-DtBU arises from a form in which the N-H group is out-of-plane owing to the steric hindrance (we will call this form the out form hereinafter), and the rotational isomers with the trans-trans (dominant) and probably out-out configurations may coexist in solutions of s-DtBU.

In the case of R_2 UR'-II, it may be seen that the amount of the coexisting *out* configuration increases with the bulkiness of the effective size of the R' group; R_2 UM-II=50%, R_2 UE-II=55%, R_2 UiP-II \approx R_2 UcH-II=60%, and R_2 UiB-II=65%. The C=O and C-N Stretching Band. The C=O

The C=O and C-N Stretching Band. The C=O stretching frequencies of R_2UR' in CCl₄ and CHCl₃ are shown in Tables 2 and 3 respectively. The frequencies of R_2UR' in CCl₄ are higher by 24—38 cm⁻¹ than those in CHCl₃; this indicates that the hydrogen bonding between the proton of CHCl₃ and the C=O group is formed in the CHCl₃ solution.

The C=O stretching frequencies of R_2UR' in the same solvent are similar, though those of DMUR' are somewhat higher in either solvent. However, it should be noted that the main C=O stretching band of R_2UR' -II appears at a frequency lower than that of R_2UR' -I by $\sim 10 \text{ cm}^{-1}$ and has a few prominences, as is shown in Fig. 2.

The C-N stretching bands of some R_2UR' -II substances in CHCl₃ appear at a frequency lower than those of R_2UR' -I, and others have an additional band (Table 3).

This work was supported by a grant from the Ministry of Education.

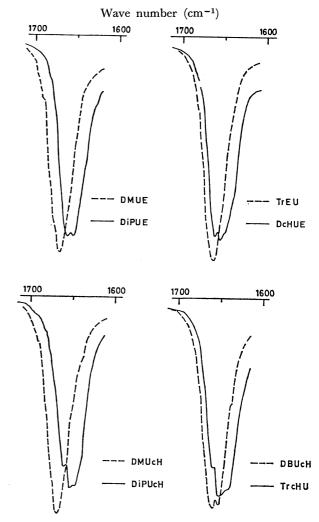


Fig. 2. The C=O stretching absorption bands of some R_2UR' in CCl_4 (0.02 M).

References

- 1) Y. Mido, Spectrochim. Acta, 29A, 1 (1973).
- 2) Y. Mido, *ibid.*, **29A**, 431 (1973).
- 3) Y. Mido, This Bulletin, 47, 1833 (1974).
- 4) Y. Mido, Spectrochim. Acta, to be published.
- 5) C. N. R. Rao, G. C. Chaturvedi, and R. K. Gosavi, J. Mol. Spectrosc., 28, 526 (1968).